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bstract
In this paper we perform an experimental evaluation of a state estimation approach in process tomography. In particular, we concentrate on the
ase where a system with rapidly moving target is imaged with electrical impedance tomography. We show experimental results which confirm
hat non-stationary estimation with proper fluid dynamical models works well even in cases where stationary estimates are completely useless.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In process tomography the aim is to monitor industrial pro-
esses on the basis of indirect observations from the boundary
f the target. Techniques used in process monitoring are basi-
ally the same as in medical imaging. The variety of modalities
nclude electrical, optical, X-ray and nuclear tracer techniques.
n many applications one is often interested in imaging targets
hat change very rapidly. That is the case for example in mixing
1–3] and mass transport [4–6] applications. If the target changes
t a very high rate in comparison with the rate of measure-
ents, the stationary tomographic reconstructions are usually

nadequate. In such cases the reconstructions may be improved
y using the state estimation approach [7]. In state estimation
pproaches the temporal behavior of the target is modeled and
he model is used in the image reconstruction to provide further
nformation on the target.

In [8,9] we applied the state estimation approach to electrical
mpedance tomography (EIT) in the case of moving fluids. We

odeled the dynamics of the system using the Navier–Stokes

quations and the convection–diffusion (CD) equation. The
esulting stochastic evolution model together with the obser-
ation model of EIT constituted the state-space representation
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mation

f the system. The reconstruction of conductivity distributions
as based on this representation, and the algorithms used in

he image reconstruction were of the Kalman Filter type. The
ited numerical studies have shown that the use of state estima-
ion with suitable evolution models may improve the estimates
onsiderably.

The aim of this paper is to provide an experimental valida-
ion of the state estimation approach in EIT. State estimation has
lready been applied to real EIT data in papers [10–12]. How-
ver, in these papers the random walk model has been used as
he evolution model, instead of more realistic models.

In this paper we consider an experimental EIT measurement
et up consisting of a saline-filled tank with a rotating impeller
nd a saline-filled table tennis ball floating in the tank. EIT mea-
urements are carried out and the state estimation approach with
n appropriate evolution model is used in the reconstruction
f the conductivity distribution within the tank. The evolution
odel is based on approximate fluid dynamical modeling of

he system and on a convection–diffusion model. The time-
ependent internal structure, i.e. the impeller, is also taken into
ccount in the reconstruction.
. State estimation in EIT

In EIT conductive targets are monitored using electrical
oundary measurements. Electric current is injected into the
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arget using electrodes attached to the boundary of the target. The
esulting voltages between the electrodes are measured and the
nternal conductivity distribution is reconstructed on the basis
f the voltage measurements.

The reconstruction problem has a nature of an ill-posed
nverse problem – even in a stationary case – and hence special
stimation methods and appropriate modeling of the measure-
ents are always required. An additional difficulty arises from

ime-varying targets because the voltage measurements at dif-
erent times do not correspond to the same target. Hence, the
se of data corresponding to multiple current injection patterns
ay lead to severe inaccuracies. On the other hand, when using

rdinary (stationary) reconstruction algorithms, a single cur-
ent injection does not (usually) yield adequate information for
econstructing the conductivity distribution. In order to tackle
he problem of non-stationarity, we write EIT in state-space
ormalism, and utilize fluid dynamical modeling in the recon-
truction.

In Section 2.1 we review the observation model of EIT. We
lso point out the difference between the stationary and the non-
tationary reconstruction problems. In Section 2.2 we introduce
ne fluid dynamical model, the convection–diffusion model,
hich is used for modeling the time-dependence of the target

n this paper. Finally, in Section 2.3 we write the reconstruction
roblem of EIT in the form of a state estimation problem and
ntroduce two algorithms, Kalman filter and fixed-lag Kalman
moother that can be used for solving the problem.

.1. Observation model

In EIT, alternating currents I� are applied to electrodes on
he surface of the object, and the resulting voltages between
ifferent pairs of electrodes are measured. The conductivity dis-
ribution σ within the object is reconstructed on the basis of the
oltage measurements. We model the observations by using the
omplete electrode model (CEM) which is known to be so far
he most accurate model used in EIT [13]. The CEM consists of
he following equations:

· (σ∇u) = 0, x ∈ Ω (1)

+ z�σ
∂u

∂n
= U�, x ∈ e�, � = 1, 2, . . . , L (2)

e�

σ
∂u

∂n
dS = I�, x ∈ e�, � = 1, 2, . . . , L (3)

∂u

∂n
= 0, x ∈ ∂Ω\∪L

�=1e� (4)

here u = u(x) is the electric potential, e� the �th electrode, z�

he contact impedance between the �th electrode and contact
aterial, U� the potential on �th electrode, I� the injected current,
the outward unit normal and L is the number of the electrodes.
n addition, the charge conservation law

L

�=1

I� = 0 (5)

s

c
c
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needs to be fulfilled. Further, in order to determine uniquely
he potentials u and U� based on the CEM, the reference level
f potential needs to be fixed. This is achieved, e.g. by writing

L

�=1

U� = 0 (6)

We approximate the complete electrode model numerically
sing the finite element method (FEM), see [13–15]. The result-
ng finite dimensional observation model is of the form

t = Ut(σt) + υt, (7)

here t is a discrete time index, Vt the observed voltages
esulting from one current injection pattern, σt ∈ R

N a finite-
imensional approximation of the conductivity distribution at
ime t, Ut(σt) a non-linear mapping between the conductivity
nd voltages and υt is observation error. If we further linearize
he observation model (7) we obtain

t = Ut(σ∗) + Jt(σt − σ∗) + υt, (8)

here the matrix Jt is the Jacobian corresponding to the model
t (σ) and the vector σ* is a linearization point.
In a stationary case it is assumed that the conductivity

ithin the target does not change during the measurements,
.e., σ1 = σ2 = · · · = σT =: σ. Thus, the observation models corre-
ponding to different current injection patterns I1, I2, . . ., IT can
e combined into one stationary model

= U(σ) + υ, (9)

here

=

⎡
⎢⎢⎢⎢⎣

V1

V2

...

VT

⎤
⎥⎥⎥⎥⎦ , U(σ) =

⎡
⎢⎢⎢⎢⎣

U1(σ)

U2(σ)
...

UT(σ)

⎤
⎥⎥⎥⎥⎦ and υ =

⎡
⎢⎢⎢⎢⎣

υ1

υ2

...

υT

⎤
⎥⎥⎥⎥⎦ .

(10)

Thus, in a stationary case the conductivity distribution σ is
econstructed based on the observation model (9). The recon-
truction problem is known to be ill-posed, and hence spatial
rior information of the target is needed to be utilized in the
econstruction. Spatial prior information is typically incorpo-
ated into the problem formulation by using the Tikhonov regu-
arization scheme. The regularized solution is of the form

= arg min
σ

{||V − U(σ)||2 + αR(σ)},
here R(σ) > 0 is a functional that favors certain a priori
nown features in the minimization and α > 0 is a regulariza-
ion parameter. The regularizing functional is usually selected
s R(σ) = ||L(σ − σprior)||2, where the regularization matrix L is
ypically a discrete differential operator, a choice which yields

mooth estimates, and σprior is a prior guess for σ.

In the non-stationary case, however, the assumption that the
onductivity distribution is non-varying during a set of different
urrent patterns is no longer valid and therefore the stationary
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bservation model (9) cannot be used. Instead, it is necessary
o use the time-dependent observation model (7) correspond-
ng to a single current injection pattern only. As a consequence,
he reconstruction problem is “even more ill-posed” than in the
tationary case due to the small amount of data relative to the
umber of unknown parameters. Therefore, in order to obtain
easible reconstructions, we need more prior information of the
arget. In the state estimation approach we thus utilize informa-
ion on the temporal behavior of the target. That is, we write

model for the time dependence of the target. In the case of
oving fluid we can use fluid dynamical models, such as the
avier–Stokes equations and the convection–diffusion equation.

.2. Evolution model

State estimation with fluid dynamical models in EIT has
een described in [8,9]. In the case of moving fluid we use the
onvection–diffusion model

∂c

∂t
= −ῡ · ∇c + κ
c. (11)

here c is the concentration of a substance, ῡ the velocity and
is the diffusion coefficient. The fluid velocity profile ῡ can be
btained from measurements or from numerical modeling of the
ow. In this study an approximate velocity profile is obtained as
solution of the Navier–Stokes equations

∂ῡ

∂t
+ ρῡ · ∇ῡ − μ∇2ῡ + ∇p = ρḡ (12)

∂ρ

∂t
+ ∇ · ρῡ = 0. (13)

We use FEM to approximate the solution of the Navier–
tokes equations and convection–diffusion equation. Further-
ore, we assume that the dependence between the conductivity

nd the concentration is linear. With this choice the FEM scheme
eads to a discrete-time evolution model in terms of conductivity

t+1 = Ftσt + st+1 + wt+1, (14)

here Ft is called the state transition matrix, and the vector st+1 is
source term which depends on the boundary conditions of the
D equation. The vector wt is called the state noise, which rep-

esents the inaccuracies/uncertainties of the model. For details
f the numerical approximation of the CD equation, see [8,16]

.3. State estimation

The approximate observation model (8) and evolution model
14) constitute the state-space model of the system. On the basis
f this model we can pose the state estimation problem, which is
f the form: Compute the conditional expectation of the random
ariable σt based on a set of observations V1:k = {V1, V2, . . .,
k}, that is, σt|k = E{σt|V1:k}. The estimates are sought by using
ecursive methods. For example, the on-line estimates σt|t can
e computed with the Kalman filter

t|t−1 = Ft−1σt−1|t−1 + st (15)

t

H
r
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t|t−1 = Ft−1Γt−1|t−1F
T
t−1 + Γwt−1 (16)

t = Γt|t−1J
T
t (JtΓt|t−1J

T
t + Γυt )

−1
(17)

t|t = (I − KtJt)Γt|t−1 (18)

t|t = σt|t−1 + Kt(Vt − U0,t − Jt(σt|t−1 − σ∗)), (19)

here Γυt is the covariance of the observation noise, Γwt the
ovariance of the state noise and the conditional covariances
re defined as Γ t|k = cov{σt − σt|k, σt − σt|k}. Furthermore, the
stimates σt|k, k > t can be computed with the (fixed-lag or fixed-
nterval) Kalman smoother [17]. Generally, the smoothers give
etter reconstructions because they also utilize the future obser-
ations when computing the conductivity corresponding to time
. In fixed-lag smoothing the objective is to compute the expec-
ations σt−q|t q > 0. The fixed-lag Kalman smoother is of the
orm

t−i = Γ
(i,0)
t|t−1J

T
t (JtΓt|t−1J

T
t + Γυt )

−1
, i = 0, . . . , q (20)

t−i|t = σt−i|t−1 + Kt−i(Vt − U0,t − Jt(σt−i|t−1 − σ∗)),

= 0, . . . , q (21)

(i+1,0)
t+1|t = Γ

(i,0)
t|t−1(I − KtJt)

TFT
t , i = 0, . . . , q (22)

here the covariances Γ
(i,0)
t|t−1 are defined as

(i,0)
t|t−1 = cov{σt−i − σt−i|t−1, σt−i − σt−i|t−1}. (23)

Thus, Γ
(0,0)
t|t−1 = Γt|t−1 is obtained from the filter Eq. (16).

. Experiments

In this section we describe the measurements that were car-
ied out in order to evaluate the non-stationary estimation meth-
ds described in the previous section. The EIT measurements
ere performed in a flat cylindrical tank filled with saline. The

ontents of the tank were stirred with an impeller. Fig. 1 is a snap-
hot of a video recorded during the measurements. The white
ircle in Fig. 1 is a saline-filled table tennis ball (diameter 2.8 cm)
oating in saline. The main objective of the experiment was to

rack the path of the ball based on EIT measurements, and to
ompare the result with the correct path seen in the videotape.

The height of the tank was 7 cm, and the diameter was 28 cm.
he tank was covered with a transparent plastic cap, in order to
revent the shape of the saline surface to change due to centrifu-
al force. The impeller was rotated by an electric motor. The
ngular velocity of the impeller was constant; the time of rota-
ion was 1.468 seconds. The measurements were performed by
sing the EIT equipment developed in the University of Kuo-
io [18]. We used 16 electrodes for the EIT measurements. The
hitish rectangles on the boundary of the tank in Fig. 1 indicate
he placement of the electrodes.
In the EIT measurements we used opposite current injections.

owever, in contrast to normal procedure, the currents were
epetitively injected between the same pair of electrodes, instead
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ig. 1. Top view of the measurement setup. The arrows indicate the current-
njecting electrodes.

f changing the current-carrying electrodes. The electrodes used
or current injection are shown in Fig. 1. One of the current-
njecting electrodes, the leftmost electrode, was also used as a

round electrode in the voltage measurements. In the stationary
ase the above choice of current injections would result poor
econstructions, because the repetition of the same current pat-
ern does not yield further information on the structure of target.

t
c
f
w

ig. 2. Top: the finite element mesh. The thick lines on the boundary represent the ele
he coordinate system is fixed to the impeller. The velocity field in the coordinate sy
ring Journal 127 (2007) 23–30

traditional approach is to rotate the measurements around a
tationary object. However, in our case the object rotates and
he current injection pattern stays unchanged. Therefore, the
elected current injection scheme corresponds (roughly) to a
tationary situation in which the current-injecting electrodes are
otated on the boundary. The current injection was repeated 64
imes, and the time between consecutive injections was 0.0557 s,
n average. Thus, during 16 current injections – the number of
njections typically needed for one stationary EIT reconstruction
the impeller rotated more than a half revolution. The amplitude
f the injected alternating current was 1 mA. Corresponding to
ach current injection, voltages between 15 electrode pairs were
easured: between one of the current-carrying electrodes and

ach of the other electrodes.
We also performed the EIT measurements corresponding to

stationary target. That is, we fixed the position of the impeller,
nd measured the voltages corresponding to one current injec-
ion. In this measurement the ball was not in the tank. This

easurement was used for estimating the conductivities of the
aline and the impeller. We first computed the best homogeneous
stimate σbh ∈ R, i.e. a single value of conductivity obtained
rom least squares fitting. This estimate was used in the ini-

ialization of the computation of the linearization point. The
onductivities of the impeller and saline were assumed to be uni-
orm and the internal structure, i.e. the position of the impeller,
as taken into account in the construction of σ* [19].

ctrodes. Bottom left: the velocity field used in the convection–diffusion model.
stem fixed to the tank at one instant of time.
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. Convection–diffusion model

In this section we discuss the CD model used as the evolution
odel in state estimation. It is worth to notice that the CD model

nd the Navier–Stokes equations introduced below are single-
hase flow models. This choice is of course contradictory with
he fact that the actual target consists of two phases: the ball and
aline. However, our previous results have indicated that the state
stimates are relatively tolerant to inaccuracies in the flow model
21]. In the following sections we demonstrate experimentally
hat, indeed, the state estimates are quite feasible even if the flow

odel is inaccurate.
The CD model was formulated basically as described in Sec-

ion 2. However, we had to modify our previous methods slightly
ecause of the impeller. We modeled the impeller as an inter-
al structure. We generated the finite element mesh taking into
ccount the dimensions of the impeller (see Fig. 2). However, in
rder to utilize the information of the internal structure, we also
eeded the position of the impeller at the times of each current
njection. In this study we simply checked the position of the
mpeller at the time of the first current injection in the video,
nd calculated the positions at the following time steps using
ur knowledge of the angular velocity of the impeller. We note
hat the position of the impeller could be determined in more

ophisticated manner.

Since the impeller rotates, we would actually need differ-
nt FE meshes for the different times. However, this need can be
voided by fixing the coordinates in the FE computations into the

i
m
m
i

ig. 3. The top views of the target (1st and 4th column), the Kalman filter reconstruct
3rd and 6th column).
ring Journal 127 (2007) 23–30 27

oordinates of the impeller. In the EIT model this required rota-
ion of the electrode locations on the boundary of the mesh. The
elocity field needed for the convection–diffusion model was
omputed numerically in coordinates fixed to the impeller. The
avier–Stokes equations were solved using the penalty method

20], i.e. the continuity Eq. (13) was replaced by

· ῡ = −p

λ
, (24)

here λ is the penalty parameter and is set to be a large num-
er. We approximated that the velocity field is stationary in the
oordinates fixed to the impeller. Furthermore, when solving the
avier–Stokes equations, we ignored the centrifugal force and

he Coriolis force that occur in the equations when perform-
ng the computations in rotating coordinates. However, when
sing state estimation we do not necessarily need a very accu-
ate evolution model since our numerical studies have indicated
hat the estimation scheme is relatively tolerant to inaccuracies
n the fluid dynamical models [21]. The computed velocity field
s shown in Fig. 2.

The approximate model between subsequent conductivity
istributions was obtained as a FE approximation of the CD
odel. Integration with respect to time was performed using the

mplicit Euler method. In order to avoid large inaccuracies, time

nterval between subsequent current injections was divided into

ultiple subintervals of equal length. In this case, the resulting
ulti-step model for the conductivities at the nodes outside the

mpeller is of the form (14) with Ft = Fm, where F is the state

ions (2nd and 5th column), and the fixed-lag Kalman smoother reconstructions
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ransition matrix corresponding to one subinterval and m is the
umber of subintervals, and st = 0 since there is no input in the
ystem.

. Results

We computed the non-stationary EIT reconstructions using
he fixed-lag Kalman smoother with lag q = 8. In the recon-
truction we assumed that the conductivity was uniform
hroughout the impeller. Thus, the state to be estimated
as σ

(r)
t ∈ R

M, M < N, where the Mth element σ
(r)
t (M) rep-

esented the conductivity of the impeller, and the elements
(r)
t (1), σ(r)

t (2), . . . , σ(r)
t (M − 1) represented the conductivities

t other nodal points of the mesh. The superscript (r) refers
o the reduced dimensionality. The temporal evolution of the

mpeller conductivity was modeled as σ

(r)
t+1(M) = σ

(r)
t (M) +

t , where the variance of the state noise εt was very small.
ince the linearization point was the same at each time step,

he quantity to be reconstructed was selected as σ̃
(r)
t = σ

(r)
t −

.

i
i
t

ig. 4. Qualitative illustrations of sensitivity of EIT measurements (1st and 3rd co
stimates (2nd and 4th column). The figures correspond to the same time instants as
olor represents lower sensitivity and smaller variance.
ring Journal 127 (2007) 23–30

(r)∗ . This choice does not cause any qualitative changes to
he smoother equations. The fixed-lag smoother was initial-
zed with σ̃

(r)
1|0 = 0 and the initial covariance was selected

s Γ̃
(r)
1|0 = diag[(0.2σbh)2, . . . , (0.2σbh)2, (10−6σbh)

2
]. The stan-

ard deviation of the observation errors was assumed to be
.4% of the difference between the maximum and minimum
oltages, and the errors were assumed to be independent on
ach other. The state noise covariance was selected as Γ̃

(r)
wt =

iag[σ2
bh, . . . , σ

2
bh, (10−7σbh)

2
]. We also computed the Kalman

lter estimates for comparison. In Kalman filter we used the
ame parameters as in fixed-lag smoother.

Fig. 3 shows a set of EIT reconstructions (Kalman filter and
xed-lag Kalman smoother) together with snapshots from the
ideo. Since current injections and the images from the video
o not correspond same instants of time, we present the 4th, 8th,

. . and 40th video frames and closest reconstructed conductiv-
ty distributions. The reconstructions were rotated so that the
mpeller is in the same position as in the video snapshots even
hough they do not correspond exactly the same time instant as

lumn) and variances of the estimation errors related to the Kalman smoother
in Fig. 3. Red color represents higher sensitivity and larger variance and blue
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he video snapshots. Both of the reconstructions are quite feasi-
le, although the radial location of the resistive target (ball) is a
it inaccurate at certain times. Further, at certain time instants the
all is stretched in the reconstructions. This is due to the velocity
radients in the flow profile and the use of single-phase models
o describe the evolution of the target. At some time instants the
econstructions may be almost solely based on the information
iven by the (single-phase) evolution model which is naturally
ot a very accurate model to describe the movement of a solid
bject. Especially, stretching effect occurs when the ball has
raveled for some time in regions where the measurements are
nsensitive to changes in the conductivity. However, when the
all moves on and reaches a region with higher sensitivity the
rtefact due to the single-phase flow model diminishes. It should
e noted that the fixed-lag Kalman reconstructions are computed
sing data also from the future and thus an estimate may sud-
enly become feasible even though the ball has not yet reached
sensitive region at that particular moment. This explains the
inor difference between Kalman filter and Kalman smoother

stimates. However, the quality of the Kalman filter reconstruc-
ions is not much lower than the quality of the Kalman smoother
stimates.

The sensitivity of the measurements was analyzed by con-
idering the Jacobian Jt. In order to find out which regions are
ensitive to changes in the conductivity, we summed the rows
f the absolute Jacobian at different time instants and plotted
he values corresponding each nodal point of the mesh. The
nalysis showed that the regions with highest sensitivity are
ocated in the close neighborhood of the current-injecting elec-
rodes, especially close to the left most electrode, see Fig. 4.
he sensitivity being higher in the neighborhood of the left-
ost electrode than in the neighborhood of the second current-

njecting electrode, the rightmost electrode, is a result of using
he left-most electrode as a ground electrode in voltage mea-
urements. The position of the impeller seems to have quite a
mall effect on the sensitivity. However, sensitivity is slightly
etter near the tank wall on the regions close to the both ends
f the impeller. In order to illustrate the accuracy of estimates
e also plotted the variances of the estimation errors related

o the fixed-lag Kalman smoohter estimates at different time
nstants, see Fig. 4. Starting from the initial value, the vari-
nces tend to become larger in the central area of the tank
ndicating that the accuracy of the estimates in lowest in this
egion. This is expectable since the central area suffers from low
ensitivity.

. Conclusions

In this paper non-stationary reconstruction methods with fluid
ynamical models were tested with real EIT data. The quality
f the state estimates was rather good taking into account that
he target changed in such a high rate that all the stationary
econstruction schemes would have resulted useless estimates.

ne might criticize, however, the use of single-phase flow mod-

ls in a case of multi-phase system. Indeed, the state estimates
ossess certain characteristic errors due to use of single-phase
odels. Furthermore, the observation and evolution processes

[

ring Journal 127 (2007) 23–30 29

ere modeled using two-dimensional approximations. On the
ther hand, the fact that the state estimates are quite reliable
ven though the evolution model is somewhat biased is a very
ppealing result. In industrial applications the velocity field is
ever known accurately. The experimental results thus con-
rm the numerical results which suggested that the state esti-
ates are relatively tolerant to mismodeling the velocity field

21].
The accuracy of the state estimates can further be improved

y using (1) 3D observation model of EIT (note that even if
he tank is flat, the 2D model is quite inaccurate), (2) non-linear
tate estimation scheme (such as iterated extended Kalman filter;
inearization of the observation model of EIT naturally lowers
he resolution), and (3) multi-phase flow model instead of CD

odel. All of these steps usually increase the computational cost
f state estimation, and it depends on the application whether
his additional cost can be tolerated. 3D modeling is required
lmost in all practical applications. In contrast, non-linear state
stimation is not always necessary. However, in some off-line
pplications it may be reasonble. Similarly, in some off-line
pplications the use multi-phase flow models may be worth-
hile.
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